
Route-Constraint Group Shopping Optimization
Final Report

Team Number: 34
Client: Goce Trajcevski

Advisers: Goce Trajcevski, Ashfaq Khokhar
Team Members/Roles:

Tavion Yrjo - Meeting Scribe, Backend Engineer
Colin Willenborg - Frontend Engineer

Erich Brandt - Web Developer
Elizabeth Strzelczyk - Web Developer

Christian Baer - Backend Engineer, Data Analyst
Colin Thurston - Trello, Tester, Algorithm Developer

Team email: sdmay21-34@iastate.edu
Team website: http://sdmay21-34.sd.ece.iastate.edu

Revised: 4/22/21

mailto:sdmay21-34@iastate.edu
http://sdmay21-34.sd.ece.iastate.edu

1

Executive Summary
Development Standards & Practices Used

● Agile: We used an Agile-like methodology for team development. By using meetings

every week to assign new tasks as well as summarize work done, we were able to

efficiently control development time.

● Version Control: The main method for version control was GitHub. By using GitHub we

were able to accurately track any changes made to the project as well as revert to older

builds if something catastrophic occurred.

● IEEE/ISO/IEC 14764-2006 Software Life Cycle Maintenance Standards: The team used

maintenance standards to ensure that updates to the software would be overall beneficial

to the project and not break other functionality.

● IEEE 1008-1987 Software Testing Standards: We used unit tests as well as functional

testing to ensure that the software functions as intended.

Summary of Requirements
● A route to drive

● Mobile and desktop application

● Database full of store locations and items with their prices

● Optimized by user spending and distance

● Multiple users

Applicable Courses from Iowa State University
● Computer Science 309: Software Development Practices

● Computer Science 319: Software Construction and User Interface

● Computer Science 327: Advanced Programming Techniques

● Software Engineering 329: Software Project Management

● Software Engineering 339: Software Architecture and Design

● Computer Science 363: Intro to Database Management Systems

New Skills/Knowledge acquired that was not taught in
● Web API

● Kotlin

● React

2

1 INTRODUCTION 4
1.1 ACKNOWLEDGEMENT 4
1.2 PROBLEM AND PROJECT STATEMENT 4
1.3 OPERATIONAL ENVIRONMENT 5
1.4 REQUIREMENTS 5
1.5 INTENDED USERS AND USES 6
1.6 ASSUMPTIONS AND LIMITATIONS 7
1.7 END PRODUCT AND DELIVERABLES 8

2. SPECIFICATION AND ANALYSIS 9
2.1 TASK DECOMPOSITION 9
2.3 PROJECT PROPOSED MILESTONES,METRICS, AND EVALUATION CRITERIA 13
2.4 PROJECT TIMELINE/SCHEDULE 13
2.5 PROJECT TRACKING PROCEDURES 13
2.6 PERSONNEL EFFORT REQUIREMENTS 14
2.7 OTHER RESOURCE REQUIREMENTS 14
2.8 FINANCIAL REQUIREMENTS 14

3. STATEMENT OF WORK 15
3.1 PREVIOUS WORK AND LITERATURE 15
3.2 DESIGN THINKING 15
3.3 FINAL DESIGN 16
3.4 TECHNOLOGY CONSIDERATIONS 18
3.5 DESIGN ANALYSIS 19
3.6 DEVELOPMENT PROCESS 20
3.7 OVERALL DESIGN PLAN 21
3.8 SECURITY CONCERNS AND COUNTERMEASURES 21

4. TESTING 21
4.1 UNIT TESTING 21
4.2 INTERFACE TESTING 22
4.3 ACCEPTANCE TESTING 23
4.4 RESULTS 23

5. IMPLEMENTATION 24
5.1 OVERVIEW 24
5.2 EVOLUTION OF DESIGN 25

6. CLOSING MATERIAL 26
6.1 CONCLUSION 26
6.2 APPENDIX I (OPERATION MANUAL) 26
6.3 APPENDIX II (PREVIOUS DESIGNS) 35
6.4 APPENDIX III (OTHER CONSIDERATIONS) 35

6.4.1 WHAT WE LEARNED 35

3

6.4.2 FUNNY MOMENTS 35
6.5 APPENDIX IV (OLD PHOTOS) 36
6.4 REFERENCES 43

List of Figures
Figure 1: Use Case Diagram
Figure 2: Task Decomposition
Figure 3: Gantt Chart
Figure 4: Design Process Diagram
Figure 5: Block Diagram

4

1 INTRODUCTION

1.1 ACKNOWLEDGEMENT
The Route-Constrained Group Shopping Optimization team would like to thank both our
advisors, Professor Goce Trajcevski and Ashfaq Khokhar for meeting with us on a weekly basis
and helping guide us through the design process of this project. We would also like to thank the
Iowa State University College of Engineering for giving our team access to professional
guidance, resources and experts.

1.2 PROBLEM AND PROJECT STATEMENT
The goal of this project is to design and implement an application for both mobile and web
platforms that would help registered groups of users (e.g., family members, members of a social
circle, co-workers, etc.) coordinate and optimize their respective shopping routes for a given
shopping list. In the context of this project, optimization is with respect to the length of an
individual user’s route, as part of collective efforts to complete a group-based purchase of a set
of items. For example, group members will be able to add constraints such as who will purchase
dairy and bread products vs. who (else) would purchase beverages - to further customize their
shopping routes by including things like the group member’s starting location, the distance from
the store, and others. The application will then generate the optimal shopping route for that
group.

The problem will involve constructing algorithms to determine the optimal shopping paths,
getting data for item prices and store locations, and the constraints. The solution for both mobile
and web will be the same. A group is defined as a set of individuals that share the same shopping
list. In the application, users can join a group with their family, friends, coworkers, etc. Any
group member can update the shopping list. To make the route a user will select the items they
want to shop for and this will update other members of the group about what items are left to be
purchased. The application will then check the group’s shopping list to find items within the
group’s maximum distance they are willing to travel. Through a map system the route would be
shown and take into account the distance constraint. With all of this the application will output
an optimized route for all group members.

5

1.3 OPERATIONAL ENVIRONMENT
Since this project will have a mobile and web application, the physical environment will depend
on which platform the user is currently accessing. On the cyber side, we would use online
systems and local systems to create the application and keep it maintained.

1.4 REQUIREMENTS
The Route-Constrained Group Shopping Optimization project will have constraints to optimize
the user experience. The constraints will limit the scope of the problem to make the algorithms
more efficient. Additionally, there will be functional and nonfunctional requirements that our
project aims to meet in order to fulfill user needs.

Constraints
● Radius of the map of stores and locations
● The time it takes to travel to different stores
● Starting the trip from home vs. varying locations
● Start time of the trip

Functional Requirements
● Store location accuracy
● Outputting the closest store with desired items with respect to distance/time to travel
● Output fastest travel time to any given store at desired start time

Nonfunctional Requirements
● Routes must generate in real time
● SQL Data must be in real time
● Application must be intuitive and easy to read

6

1.5 INTENDED USERS AND USES
The main user for this application is a group who wants to minimize their distance traveled and
money spent while shopping.The final result is a route that is optimized for a single group
member on spending, and the constraint of distance, for efficient shopping. Figure 1 shown
below is a use case diagram for the use cases of the project.

Users
● Individuals
● Group members

Uses
● Join a group with family members, coworkers, friends, etc.
● See shopping list of user and group members
● Add or remove items from shopping list
● See location on a map
● Have applications access user location
● Show their optimized route

7

Figure 1: Use Case Diagram

1.6 ASSUMPTIONS AND LIMITATIONS
The assumptions and limitations will assist in the decision making process for this project.
Assumptions help create a more defined idea for the intended user, as well as also defining the
limitations of this project.

Assumptions:
● The customer must create an account to be routed to stores
● The customer has a phone or PC to access this application
● The customer has access to an internet connection
● Maximum number of users is unknown, however the project can be scaled to

accommodate more users
● Multiple users can join a particular group and collaboratively update the shopping

lists
●

8

Limitations:
● This application will only work inside of the United States
● Routes and Maps will be generated using MapboxAPI
● Loading times will be determined by the quality of the users internet connection
● Loading times will be affected by the size of the user’s list
● The webscraper will only input the top 10 results for any given item into the

database

1.7 END PRODUCT AND DELIVERABLES

Goal Description

User log in A user can log into both applications using a
username and password.

User registration A user can register a new account to the
application.

Adding items to list A user needs to be able to add items to a
specific list.

Deleting items from list A user can click on an item in a shopping list
to remove the item from that list.

Joining groups A user can join a group.

Finding items A user can search for an item from our list of
items.

Route generation The user selects items and depending on the
items selected, the route is generated

Deleting groups A user who owns (aka who created the group)
must be able to delete a group

Leaving groups A user has the ability to leave a group.

Displaying the route to users The backend will send a list of waypoints to
then be displayed for the user to then go and
do the shopping.

Adding New Users to Groups Users can enter a username of a user they
would like to add to their group.

Selecting specific items from the list for a
route

Users can select which items they would like
to generate a route for.

9

Deliverable Description

Web Application The project will feature a web application that
can deliver all the above functionality on an
easy to use service

Android Application The project will feature a mobile app that can
deliver all the above functionality through a
mobile platform.

Web Scraper When an item is not in the database, the web
scraper will search for the item and put the
results into the database

Algorithms When generating a route, we use Dijkstra’s
algorithm to generate the most efficient route
from a dynamic starting point

2. SPECIFICATION AND ANALYSIS

2.1 TASK DECOMPOSITION

In this section, we break down each of the stages of the development process for the project. The
Gantt chart below illustrates how long each stage should take, and when it will be started upon.
The sections are explained more in detail below as well. See Figure 2 below for a diagram.

1. Identify Components
a. In this stage, we would be talking with our client and start determining

preliminary design. This would also include finding all the requirements and a
general timeline when things should be done.

2. Research
a. For this stage we would start researching components that would be a part of the

solution. This would include researching getting item data from the stores, getting
the road network information from an area, and the distance from stores to stores.
Development environments that would work well with the ending product.

10

3. Develop Basic Design Plan
a. Make a dynamic timeline
b. Define a concrete solution.
c. Cost and risk analysis.
d. Determine end users and preliminary look of end product.
e. Discuss and revise preliminary design with clients.

4. Make Use-Cases and In-Depth Design
a. Make scenarios for each step of design.
b. Build design for each component of our solution.

5. Finalize Design
a. Set in stone the design of each component.
b. Create a component diagram that shows how each component is connected to

each other.
6. Finalize Basic Function

a. Get a basic application working on either Android or Web.
b. Be able to interact with the application with buttons or text boxes.
c. Iterate through each scenario and build the required component functionality for

each.
7. Review Design

a. After the winter break review the design in order to refresh our minds.
b. Add any details that we might have missed.

8. Begin Implementation
a. Work with the basic functioning application.
b. Make databases for the data that is going to be needed.
c. Connect those pieces of data to be shown on the screen.
d. Begin working out the algorithms for the route generation.

9. Complete Implementation with Testing
a. Complete algorithms with simple inputs.
b. Use the data being pulled in to interact with the algorithms.
c. Design a better looking and functioning UI.
d. Start testing the application for integration and unit testing.

11

10. Demos and Bug Fixes
a. Get a working product that can be demoed.
b. Fix any bugs that appear while testing and demoing the product.

Figure 2: Task Decomposition

12

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Task/Component Risk Risk Probability Risk Mitigation

Identify Components Component is not
identified or a
component is
incorrectly identified.
Not all requirements
are gathered

0.7 Meet with Client again
to firmly establish
requirements and
components

Research Information found is
false or Information not
available

0.6 Compare research
results with multiple
credible sources.

Develop Basic Design
Plan

Preliminary design is
not what the client
asked for.

0.6 Meet with Client again
to firmly establish
requirements and
components

Making Use Cases and
in Depth Design

Scenarios do not
correctly reflect how
the end user will use
the application

0.4 None

Finalize Design Component Diagram
incorrectly shows how
each component is
connected to one
another

0.7 Meet with team and
remake component
diagram to make sure
that each component is
correctly connected

Finalize Basic Function Scenarios were
incorrectly formed on
false requirements

0.2 None

Review Design Design Document is
missing information

0.8 Add any details missed
in the design

Begin Implementation Databases and Server
cannot be accessed by
the Web Application

0.5 None

Complete
Implementation with
Testing

Testing reveals bugs in
code or implementation
incomplete

0.6 Fix bugs and meet with
whole team to fix issues
regarding
implementation

Demos and Bug Fixes A bug is encountered
that cannot be fixed

0.3 None

13

2.3 PROJECT PROPOSED MILESTONES,METRICS, AND EVALUATION
CRITERIA
For the first semester our milestones are: To have a semi-completed design done halfway through
the semester. The final milestone for this semester would be a completed design and design
document. For the second semester our milestones will be the different levels of functionality for
our project. Single user multiple stores, single group multiple stores, multiple starting times,
travel_distance vs. travel_time, and Scalability. These milestones can be measured by their
functionality and if they work. Another milestone will be the completion of the web application
and mobile application which will be measured again by their completeness and functionality.
One way to do this is to get test users and get feedback throughout the development process to
get a continuous stream of feedback and evaluation criteria.

2.4 PROJECT TIMELINE/SCHEDULE

Figure 3: Gantt Chart
See Section 2.1 for a detailed description of each task associated in the Gantt chart.

2.5 PROJECT TRACKING PROCEDURES
Our team used Trello for project tracking and management and used GitHub for the file tracking
and collaboration. We also used Discord to conduct team meetings and communication and also
to keep track of meeting notes, assignment deadlines, and important information/announcements
we want pinned.

14

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Effort Requirement (Person hours)

Identify Components 3

Research 12

Develop Basic Design Plan 30

Making Use Cases and in Depth Design 60

Finalize Design 36

Finalize Basic Function 30

Review Design 30

Begin Implementation 24

Complete Implementation with Testing 300

Demos and Bug Fixes 90

Total 615

2.7 OTHER RESOURCE REQUIREMENTS
There are no physical parts and materials needed to complete this project. The project was
completed on various coding platforms. These platforms are Android Studio with Koltin,
React.js, ASP.NET with C#, and Python for the algorithms.

2.8 FINANCIAL REQUIREMENTS
The Mapbox API we used costs $0 for every 50,000 requests per month. The team stayed within
this 50,000 request limit, so the API had no cost to the team. Hosting a server for the web and
mobile application cost $0 a month as we found a web host for free. Additionally, the web
scraper and routing algorithm was put on an Amazon Web Server instance. This is free for the
first 12 months if the use of the instance does not exceed 750 hours. Publishing the application to
the Android store is a $25 one time payment. The route generation to find the stores incurs a cost
of $0 unless we go over 500 uses in a month. In total, the cost for this project was $0.

15

3. STATEMENT OF WORK

3.1 PREVIOUS WORK AND LITERATURE
There is substantial literature and previous work available for research to aid in the development
and design of the project. After surveying multiple options through the research of this literature,
the group has decided upon utilizing Mapbox for a road network API. Mapbox has developed an
API for generating road networks and maps which can help with shopping route generation. The
advantage of using Mapbox is that it is free for the purpose of this project, and can generate an
accurate map of an area. We initially decided upon utilizing a modified version of Dijkstra’s
shortest path algorithm called the A star (A*) algorithm for calculating the shortest path from a
starting location to a desired store. However, for this project, we decided to use Dijkstra's
algorithm because of its simplicity and popularity for shortest path generation. However, an
additional factor was that we could not obtain road-maps with travel-time distributions across a
broader geographical region(s).

Previous Work
● Mapbox
● Dijkstra’s Algorithm
● A* Algorithm
● Distance Indexing

Literature
● “Distance Indexing On Road Networks” by Haibo Hu, Dik Lun Lee, and Victor C. S. Lee

3.2 DESIGN THINKING

In the figure below, the design process diagram developed by the team can be found. The main
“define” aspect that has shaped the current design is to “utilize the client’s suggestions to make a
problem statement.” The team has worked very closely with the client, meeting weekly to go
over progress made and the expectations of what work needs to be done in days to follow. This
has allowed the team to properly understand the expected requirements and make design
decisions that best fit the project. For example, by meeting with our client consistently, the team
was able to choose the proper technologies to develop the project.

16

The “define” stage was followed closely by the “ideate” stage, where the team has mainly
focused on “brainstorming solutions to the problem statement.” In this stage, the team has
established the simplest variants of the solution, and worked our way up to the most complex
variant. This determines the timeline of later development, as well as the use cases for each
variant.

Figure 4: Design Process Diagram

3.3 FINAL DESIGN

To properly fit our design to the problem at hand, we investigated (and, subsequently, opted for)
a divide-and-conquer approach, breaking down the problem into smaller ones - based on
different facets of the problems and the corresponding tools/platforms to be used for
implementing them. As we completed the smaller problems, we could combine them together to
create a fully finished design.

Routing Algorithms:

For our project we must find the most efficient path between a user and the stores they
wish to visit. To solve this problem, a pathing algorithm is needed. The two pathing
algorithms that we came up with were the A* algorithm for time dependent shortest path
and Dijkstra’s algorithm for shortest path. We chose to use Dijkstra's algorithm as we
only need to find the fastest path to the stores. This will help us complete the following
requirements: Outputting the closest store with desired items with respect to
distance/time to travel | Output fastest travel time to any given store at desired start time |
Routes must generate in real time

17

Storage of User and Store Data:

To properly store the information that we get from users and stores we populate tables in
our database. To do this efficiently, we normalized the data before putting it into the
database. All store information such as name and location is stored in one table. All
product and price information is stored in another table. All user information such as
name and address are stored in one table. All shopping list information is stored in
another table. Normalizing the data allows us to update, delete, and add to the database
faster. It also decreases the amount of repetitive data we have. This design will complete
the requirements: SQL Data must be in real time | Store location accuracy

Creating a UI:

The UI was made both on mobile, with an Android application, and web application, with
React. The Android Application was developed using Kotlin and Android Studio. This
allowed us to use Google’s most recent Android development tools. The UI provides a
clean and easy to use interface for users. This was achieved by creating pages with
minimal information and buttons that are clear and concise for users to avoid confusion.
These same ideas will be used in the web application, giving the users the information
they need and not cluttering the screen with unnecessary buttons and information.

Web Scraping Store Data:

For the project, we needed to be able to get an item and its price from the stores in a
certain distance and store it in the database. We used web scraping to access the stores in
an area and grab the item that is on the shopping list from the UI. Finally the item is
inserted into the database via the web scraper. This was developed in Python.

Hosting a Server:

For the project, we hosted a server to contain all elements of the project solution. This
server includes the API, UI, and the MYSQL Database. It is important that each piece of
the project is hosted in a place where the other components can access and communicate
with it. If this were not the case, then the project would not work. Hosting the server for
our project is tied to all of the requirements discussed in earlier sections. We decided on
using the web hosting site of Gearhost and AWS.

18

Figure 5: Block Diagram

3.4 TECHNOLOGY CONSIDERATIONS
The technology utilized within the project spans multiple languages and platforms. The
development of a web and mobile application needed different software programs for their
development. Additionally, the database needed to be maintained, as well as an API for the map
used to find routes. The following technologies were determined to be the best fit for the
development of the project.

● Android Studio
○ Mobile application

19

● React
○ Web application

● ASP.NET API
○ Grab data from the database

● MYSQL Database
● Mapbox API

○ Getting the map of the area needed
○ Stores in the location

● Windows IIS Server
○ Server for the backend

● Algorithms
○ Web scraper
○ Route generation

3.5 DESIGN ANALYSIS
We will break down the analysis into 4 sections: Android, Web, Backend and Algorithms.

Android:

The android application for this system was implemented using a mix of Kotlin and Java. The
reason behind the mixture of these two languages is strictly due to developer experience and
preferences with these languages. Additionally, the Mapbox API included great support for both
Kotlin and Java.

The mobile app ended up having all UI components that were needed to complete the earlier
stated goals. Some of these goals include: creating accounts, groups and shopping lists,
modifying groups and shopping lists, selecting items to create a route with, and
starting/displaying a route. Most of the issues present were purely due to time constraints with
the semester ending and sacrificing the visual experience with the functionality to complete our
end goals. This sacrifice resulted in the UI having some very obvious bugs, but the overall end
goal was achieved.

Web:

The web application for this system was implemented using a mix of Javascript and React. By
using Javascript and React, we were able to develop a fast, flexible, and polished application.
Additionally, React has a component for the Mapbox API, which allowed us to easily integrate
our routing implementation into the project.

In the web application, all the UI components needed to complete the previously stated goals
were completed, including creating accounts, groups, and shopping lists, modifying groups and
shopping lists, selecting items to create a route, and displaying a route. The web application does
not look how we originally envisioned, but it still looks clean and professional, and all of the
necessary functionality was completed.

20

Backend:

Our database is a MYSQL database and uses many tables to store the data necessary for our
application to function correctly. To save on space, we normalized the data to an extent to
prevent redundant data. To speed up getting data, we created views that retrieve data from a
maximum of only three tables. For our API we use an ASP.NET application to act as a middle
man for data transfer between the database and the frontend. We are using a package called
Swashbuckle to give the API a sleek looking UI that allows the frontend team to test and access
the API method calls. Each controller and it’s methods are accounted for in this generated Web
Application.

Algorithms:

The algorithms were initially designed to be as fast and efficient as possible. For the web scraper
finding the items was parsing HTML within Python. This worked great as we got good results
and filled out the database when a new item was needed. There was an issue that all web scrapers
have where certain websites block these types of scripts. This did happen to us with Google
Shopping blocking the web scraper. We found an alternative with Bing. For the Route generation
it works and can take in items, filter the items for the stores and send a route to the front end to
be displayed. Unfortunately, parsing the data for large amounts of stores does take some time. It
is not as good as we hoped but it does work and has room for improvement.

3.6 DEVELOPMENT PROCESS
The main development process for this project is a modified version of Agile. We used Agile as
it pushed the project forward through test-driven development. By having team meetings every
two weeks, the design process was streamlined and allowed for a clear understanding of design
goals by every team member.We had updates to the applications every week or two weeks. When
integration of different parts of the program started, we met up in smaller groups depending on
who was working on what. Every two weeks we had a sprint to discuss the previous two weeks
of work and what to accomplish in the next two weeks. Additionally, we would meet with our
advisor the day after sprint to discuss progress on the project.

Version Control and Project Tracking:
Our project used Github as our version control system so we could all collaborate on the project
synchronously and avoid having conflicts with each other. For project tracking and task
management, we used Trello to allow us to assign tasks to each other and track those tasks
throughout the development process. Both of these tools were crucial for our team following the
Agile development process.

21

3.7 OVERALL DESIGN PLAN
The main design plan was to use the five pillars of design thinking. By empathizing, we
communicate with our client and find out the requirements for the problem. When defining, we
are establishing the requirements and constraints for the project moving forward. In ideation, we
determined multiple variants to the problem and ways to solve all of them. Then by assigning
roles to each of these problems/solutions we are able to start prototyping. Once prototyping
began, we started development of the application to figure out what ideas worked and what we
can change to improve the final product. We then started unit testing and integration testing to
start refining our project into a quality product.

3.8 Security Concerns and Countermeasures
The main security concern from the project stems from the fact that the application requires the
user’s location in order to generate a shopping route. To provide a safe application for our users,
our project implemented password encryption to protect our users’ login information. By
encrypting our users’ login information, we add another layer of security to protect the
information necessary for our users to use our application. Another security countermeasure
implemented in the project is that the web application created Private Routes to the application’s
urls. By using Private Routes, the web application forces the user to login to be able to navigate
to the different web pages implemented in the application. If a user doesn’t login, every page of
the application will redirect to the login page, forcing the user to login. This protects the project
from user’s trying to interact with the application in unintended ways.

Another security countermeasure we practiced while developing this project is that we created
multiple repositories to back up our code. By having multiple backups, should anything happen
to our code and cause it to drastically malfunction, we can revert to one of our backup
repositories and begin implementing again.

4. TESTING

4.1 UNIT TESTING
Some of the software components we have tested include: the algorithms, mobile app, web app,
backend database storage, map routing, and the web scraping. Testing allows us to individually
test each component before fitting all the pieces together for the final product. Testing also
allows for focus on one area at a time, and thorough testing of that aspect of the product. Unit
testing allows for quick identification and isolation of problems.

● Methods for achieving these unit tests include a manually created database to compare
with the actual created database as data is sent so the two could be compared.

22

● For the web scraping it is to make sure that we get data back after parsing the data.

● For mobile we can have a third party create various unit tests, for the algorithms we give
it sample data and have the algorithm run through the code to see what the result is. Then
compare these results to the expected results.

The next versions of the project we would want to test more specific API to get the items. So this
can be testing things like the Walmart API to see if we are getting the price and the name of the
item. Also, to confirm that the item is in the store. We would also want to go more in depth with
the testing as we had some done but need more specific tests.

4.2 INTERFACE TESTING
Interface testing was done by testing different scenarios within the Web and Android
Applications. These scenarios included testing different use cases such as adding a user to a
group and starting a shopping trip with a set list of items. Once all of the use cases were tested,
we did extensive QA testing to make sure that all features of the applications worked as
intended.

● Algorithms and database
○ To test the web scraping algorithm with the database, we used the web scraper

locally to add items to the database. To ensure the functionality of the web scraper
we validated that the new products and stores appeared in the database. The
pathing algorithm did not need any implementation testing with the database.

● Algorithms and user interface
○ To test the pathing algorithm with the user interface, we sent product data to the

pathing algorithm and ensured that the mapbox data that was sent back correctly
pathed to each item that was given in the product data. To test the web scraping
algorithm with the user interface, we called the web scraper with the name of a
new item we wanted to add. To ensure functionality, we validated the appearance
of the new products and stores within the database.

23

● Database and user interface
○ There were many instances that needed to be tested in terms of the union between

the user interface and database. To test all of these transfers of data we used http
tests to make sure that each call to the API from the interface received an HTTP
OK status as well as the correct application format from the response.

● Algorithms, database, and user interface
○ Testing everything together to see if the project is working smoothly. This is done

by showing our advisor and letting other users besides us to test it. Also, to make
a demovideo to be at the level of presentation for the final presentation.

By testing the units in groups of two before testing all of the units together it will allow quick
identification of problem areas in the units.

4.3 ACCEPTANCE TESTING
The use cases were the key to make sure that our functional and nonfunctional requirements
were met. We ran each test for each use case many times to ensure that each test passed without
any failures. We met with our advisor as well to discuss our final product. During this meeting
we demonstrated the functional and nonfunctional requirements. He was satisfied with the results
of the demo. We also reviewed the project description before and after working on our use case
tests. We did this to ensure that each functional requirement was met.

4.4 RESULTS
With the testing we started out by doing unit testing. We tried to do as much as we could locally
before tying in more systems. The unit testing included having the web scraper getting results
back. This can be shown above in the unit testing section. We also tested adding data to the
database and making sure the data was correct and secure. With the testing of routes we do
something similar and see if there is data coming back from the route generation. For the
interface testing we mainly focused on doing two of the components and making sure they
connect together. This worked well as we found problems and it was easy to find them. Instead
of having to worry about everything in the project we were able to narrow stuff down and when
bringing it all together it went relatively smoothly. For acceptance testing we combined
everything and had other people test it. We then went through the entire process in order to make
a demo for our advisor and for the final presentation.

24

5. IMPLEMENTATION

5.1 OVERVIEW
Our first decision in the implementation was to split off into 3 different implementation groups.
The 3 groups were Android, Web, and Algorithm/Backend development.

Android implementation was to be done in Kotlin and Java. The main framework for the mobile
app was created using Kotlin, while the map related code was mostly done in Java. Kotlin was
the choice for the framework since it is generally more lightweight and faster to compile than
Java. The reason that the map related code was done in Java was due to developer competence in
Java rather than Kotlin. The initial mobile app was created with hardcoded values for everything
to get the initial UI created. This then allowed us to add in api calls that would populate the
various data fields and text fields that were displayed. Once we had that finished we were able to
connect the UI and Map/algorithm pages completing all the intended goals.
In the development of the Web application, the first step was to set up some simple UI designs
for various pages. We used React and NodeJS to run our application. We started by creating a
login page and home page that could route to one another on a login submission. To start, all of
our data was placeholder data that was hard coded into the application to create the proper UI
design. After that we expanded to specific list pages, a settings page, and a page to hold the map.
Once the initial UI design was complete, we set out to connect all of our information to the
database, so we could stop using placeholder data and instead start using some real life calls
from the database. This proved to be challenging at times, because what had previously worked
for placeholder data didn’t always work the same with real data. Some of the previous UI had to
be re-written and re-tested for the implementation to work correctly. Finally, the last step in the
implementation was to connect the web scraper and Mapbox routing algorithm to the application
in a clean, user-friendly way. This step was fairly smooth since connecting these elements did not
require much UI overhaul and were quick to connect.

With the Algorithms a lot of research went into which language would work best. C# was one of
the language candidates for the web scraper but when seeing what would be efficient and easy to
work with Python was selected. This was done in one file and would encompass finding results
for the item and then adding it to the database. It went from local data to being able to get data
from the internet. Along with this file there was the route generation. This was also done in
Python to make it easier to call when it was eventually put onto a server. The server was made
with node.js. The node.js app is a simple web server that the front end can call for both web
scraper and route generation. The web server would spawn a new process for each call.

25

Our database design has been modified since the beginning of our design process. We ended up
having to add more tables to our database to account for the normalization of some of our tables.
We also needed to create more views for use of data access for the frontend teams. Modifying
our database led to a ripple effect of modifications that needed to be made to the rest of our
backend. Our API needed more database models to be able to account for the new tables and
extra views that were created. New methods that modified and retrieved this data also had to be
created. We also switched from the idea of using our own server to host pieces of our project. We
ended up using a free hosting service.

5.2 EVOLUTION OF DESIGN
Our project had undergone substantial design changes throughout the implementation stages.
One of the earliest changes was the switch from a desktop application to a web application.
Another change was switching from the A* algorithm to Dijkstras. This was a big change
because it reduced the amount of complexity but still had the same result we were expecting.
With the web scraper we had to come up with contingency plans if the web scraper was blocked
from getting results by Google’s anti-script software. The solution here was to switch from
Google Shopping to Bing Shopping. The route generation was originally made in Java, but with
using node.js it was easier to make new processes with Python. So the code for the route
generation was made in Python. Another evolution was to have the route generation algorithm to
be on a server instead of the front end code bases.

26

6. CLOSING MATERIAL

6.1 CONCLUSION
We have completed our design and implemented all steps of functionality for our project. We
have the web application, API, database, android application, and web scraper all working
together. To complete those aspects, we iterated through each of our simplified scenarios until we
reached the most complex and complete scenario. The application is now being hosted on
cyshopper.gear.host and all use cases are implemented. Once all use cases were completed, we
went through each of our Unit and Use tests to ensure the functionality of the application.

6.2 APPENDIX I (OPERATION MANUAL)
Download app on Android:

Go to the Google Play store store and look for CyShopper

Go to the website:
Navigate to our website at cyshopper.gear.host

Register as a user:
Enter your user information that is: name, location,
email, username and password. Each has a text box
and hit submit when all items are filled.

Login as the user:
You will be redirected to the login page. Login with
your new credentials. You will be redirected to the
homepage.

http://cyshopper.gear.host

27

28

Create a List:
Once on the homepage create a new list. Put a name in the text box and hit the add
button. Once the list has been created you can click on it or create other lists. If you do
click on the list then you will be taken to that list’s items.

29

Add other users to the group:
Add other users to the group you created by using their username.

30

Add items to the list that exists:
Once in the list page, refer to the drop down box above to add items to the list that are
already in our database. These items can be searched for by typing into the box. Once the
item you want is found, click on it and it will be added to the list.

31

Add items that do not exist:
If you do not see the item in the search/drop down box enter the item’s name in the text
box that says “Add a product to our inventory”. Once you do hit the enter button on your
keyboard and it will add items with that name to the search/drop down. Then follow the
step above to add the item to your shopping list.

32

Delete item from list:
Hit the radio button that says “Delete Items”. Once this radio button is selected, you can
click on any of the items listed within the shopping list and they will be deleted from the
list.

33

Select items for route:
Hit the radio button that says “Select Items”. Once this radio button is selected, you can
select all the items you want to shop for. Then you can hit the start shopping button.

34

Generate route with the items selected:
Once you hit the “Start Shopping” button it will take you to the map page. It will take the
items and generate a route based off of those items and their respective stores. After a
brief loading period, the map on the page will generate an optimized route for the user to
retrieve all of the selected items on their list.

Remove items when on route
Not available on mobile but does work on Web application

Users will remove items from their list as they pick them up. They will be able to select
the item and it will disappear from both the map list page and the general shopping items
page.

Once you have traveled on the route, you can start the process over again or logout and until
other time shopping.

35

6.3 APPENDIX II (PREVIOUS DESIGNS)
Pictures from our first semester design can be found in section 6.5 and shows a rudimentary
design of what our mobile and web app were going to look like. This idea was modified at the
start of the semester as we started coding our apps and found what worked/looked best with the
tools available to us. At initial second semester meetings we also had some design changes occur
due to our group’s idea of what we wanted our end goal to look like and what our project and
team advisor had in mind. We were going to focus more on a broad range of groups and group
dynamics and our advisor pointed us in the direction of focusing on a simple approach and
capping it at a single family to avoid unnecessary complexity in the project.

6.4 APPENDIX III (OTHER CONSIDERATIONS)

6.4.1 WHAT WE LEARNED
Through the year long senior design class our group had to tackle many new problems and work
with new technologies that some of us had zero experience with before the project. On our
android side Tavion and Colin W. learned/got more practice in Kotlin and android development.
Our web team of Elizabeth and Erich had no experience with react and outside of the one web
development class at ISU had no web development experience so there was a steep learning
curve. None of us had worked with mapbox prior to this project so working with a map api was a
new tool that we were able to add on to our toolbelt. The other big learning experience was the
combination of the web scraper and algorithm that we had to use to circumnavigate the paid api
services that were available on company websites. Using python we were able to implement
them both that took a lot of trial and error to get them to work. Throughout the semester we also
learned how to work in a team and work with team members of different skill sets. We had
opportunities to practice communication skills between team members and project
managers/team leads. These skills will translate nicely into the workforce as we all transition into
other jobs and areas of our lives.

6.4.2 FUNNY MOMENTS
Lots of funny moments occurred during testing due to the nature of software bugs. One such
moment was when we were testing our routing methods and our optimized route decided to take
us across Lake Michigan to go on an international road trip to Toronto, Canada and then Georgia
to pick up a cucumber in Toronto and then a full pear tree in Georgia. Another funny story is
when we had to switch over to Bing for our webscraper because Google had flagged our
webscraper as a bot and wasn’t allowing the webscraper to continue using their search engine.

36

6.5 APPENDIX IV (OLD PHOTOS)

37

38

39

40

41

42

43

6.4 REFERENCES
A. Chiang, “Distance Indexing on Road Networks”, presented to CS 4440 [PowerPoint Slides].

Available: https://iastate.app.box.com/file/714037198015

“A* Search Algorithm,” GeeksforGeeks, 07-Sep-2018. [Online]. Available:
https://www.geeksforgeeks.org/a-search-algorithm/. [Accessed: 02-Nov-2020].

Mapbox. [Online]. Available: https://www.mapbox.com/. [Accessed: 02-Nov-2020].

T. L. M. RK. Ahuja, et. al., “Spatial crowdsourcing: a survey,” 01-Jan-1993. [Online]. Available:
https://link.springer.com/article/10.1007/s00778-019-00568-7. [Accessed: 03-Nov-2020].

https://iastate.app.box.com/file/714037198015

